Analysis and Design of Aircraft Structures
Index:
Accelerated Motion of Rigid Airplane ……………………………………..A4.8
Aircraft Bolts………………………………………………………………………D1.2
Aircraft Nuts ………………………………………………………………………D1.2
Aircraft Wing Sections – Types………………………………………………A19.1
Aircraft Wing Structure: Truss Type………………………………………..A2.14
Air Forces on Wing……………………………………………………………. A4.4
Allowable Stresses (and Interactions)………………………………………C11.36
Analysis of Frame with Pinned Supports…………………………………..A9.16
Angle Method……………………………………………………………………..C7.1
Application of Matrix Methods to Various Structures …………………A7.23
Applied Load………………………………………………………………………A4.1
Axis of Symmetry…………………………………………………………………A9.4
Beaded Webs …………………………………………………………………….C10.16
Beam Column …………………………………………………………………….C4.72
Beam Design – Special Cases…………………………………………………D3.10
Beam Fixed End Moments by Method of Area Moments…………….A7.32
Beam Rivet Design……………………………………………………………….C10.8
Beam Shear and Bending Moment…………………………………………..A5.1
Beam Forces at a Section………………………………………………………A5.7
Beams – Moment Diagrams……………………………………………………A5.6
Beams with Non-Parallel Flanges……………………………………………C11.9
Beam Shear and Moment Diagrams………………………………………..A5.2
Beams – Statically Determinate & Indeterminate………………………..A5.1
Bending and Compression of columns …………………………………….A18.1
Bending Moments – Elastic Center Method………………………………A9.1
Bending of Rectangular Plates………………………………………………..A18.13
Bending Strength – Basic Approach………………………………………..C3.1
Bending Strength – Example Problems…………………………………….C3. 4
Bending Strength of Round Tubes…………………………………………..C4.15
Bending Strength – Solid Round Bar………………………………………..C3.1
Bending Stresses …………………………………………………………………A13.1
Bending Stresses – Curved Beams…………………………………………..A13.15
Bending Stresses – Elastic Range…………………………………………….A13.13
Bending Stresses – Non-homogeneous Sections ………………………..A13.11
Bending Stresses About Principal Axes…………………………………….A13.2
Bending of Thin Plates…………………………………………………………..A18.10
Bolt Bendng Strength ……………………………………………………………DI.9
Bolt & Lug Strength Analysis Method………………………………………D1.5
Bolt Shear, Tension & Bending Strengths………………………………….D1.3
Boundary Conditions ……………………………………………………………A24.8
Box Beams Analysis …………………………………………………………….A22.5
Brazing ………………………………………………………………………………D2.4
Buckling Coefficient ……………………………………………………………..C5.1
Buckling of Flat Panels with Dissimilar Faces……………………………..C12.25
Buckling of Flat Sheets under Combined Load…………………………..C5.6
Buckling of Rectangular Plates………………………………………………..A18.20
Buckling of Stiffened Flat Sheets under Longitudinal
Compression……………………………………………………………………….C6.4
Buckling under Bending Loads………………………………………………..C5.6
Buckling under Shear Loads……………………………………………………C5.6
Buckling under Transverse Shear……………………………………………..C8.14
Carry Over Factor………………………………………………………………..Al1.4
Castigliano’s Theorem……………………………………………………………A7.5
Centroids: Center of Gravity. . . . . . . . . . . . . . .A3.1
Cladding Reduction Factors. . . . . . . . . . . . . . . .C5.5
Column Analogy Method . . . . . . . . . . . . . . . . . .A10.1
Column Curves – Non-Dimensional . . . . . . . . . . . . .C2.2
Column Curves – Solution . . . . . . . . . . . . . . . . C2.13
Column End Restraint . . . . . . . . . . . . . . . . . . C2.1
Column Formulas . . . . . . . . . . . . . . . . . . . . .C4.2
Column Strength . . . . . . . . . . . . . . . . . . . . .C7.21
Column Strength with Known End Restraining Moment . . . . C2.16
Combined Axial and Transverse Loads – General Action . . .A5.21
Combined Bending and Compression . . . . . . . . . . . . .C4.22
Combined Bending and Flexural Shear . . . . . . . . . . .C3.10
Combined Bending and Tension . . . . . . . . . . .. . . .C4.23
Combined Bending and Tension or Compression of
Thin Plates . . . . . . . . . . . . . . . . . . . . .A18.17
Combined Bending & Torsion . . . . . . . . . . . . . . . .C4.23
Combined Stress Equations . . . . . . . . . . . . . . . . C1.2
Compatibility Equations. . . . . . . . . . . . . . . . . A24.7
Complex Bending – Symmetrical Section . . . . . . . . .C3.9
Compressive Buckling Stress for Flanged Elements . . . . .CO.1
Conical Shells – Buckling Strength . . . . . . . . . . . C8.22
Constant Shear Flow Webs . . . . . . . . . . . . . . . . .A14.10
Constant Shear now Webs – Single Cell – 2 Flange Beam. . .A15.3
Constant Shear flow Webs – Single Cell – 3 Flange Beam. . A15.5
Continuous Structures Curved Members . . . . . . . . . . .All.31
Continuous Structures – Variable Moment of Inertia . . . .All.15
Core Shear . . . . . . . . . . . . . . . . . . . . . . . .C12.26
Correction for Cladding . . . . . . . . . . . . . . . . . C7.4
Corrugated Core Sandwich Failure Modes . . . . . . . . . .C12.27
Cozmone Procedure . . . . . . . . . . . . . . . . . . . .C3.2
Creep of Materials . . . . . . . . . . . . . . . . . . . B1.8
Creep Pattern . . . . . . . . . . . . . . . . . . . . . B1.12
Crippling Stresses Calculations . . . . . . . . . . . . .C7.7
Critical Shear Stress . . . . . . . . . . . . . . . . . .C11.16
Crystallization Theory . . . . . . . . . . . . . . . . . C13.1
Cumulative Damage Theory. . . . . . . . . . . . . . . . .C13.3
Curved Beams . . . . . . . . . . . . . . . . . . . . . . A5.6
Curved Sheet Panels Buckling Stress . . . . . . . . . . .C9.1
Curved Web Systems . . . . . . . . . . . . . . . . . . . C11.29
Cut-outs in Webs or Skin Panels . . . . . . . . . . . . . D3.7
Deflection Limitations in Plate Analyses . . . . . . . . A17.4
Deflections by Elastic Weights . . . . . . . . . . . . . A7.27
Deflections by Moment Areas. . . . . . . . . . . . . . . A7.30
Deflections for Thermal Strains . . . . . . . . . . . . .A7. 17
Deflections by Virtual Work . . . . . . . . . . . . . . .A7. 9
Delta Wing Example Problem. . . . . . . . . . . . . . . .A23. 2
Design for Compression . . . . . . . . . . . . . . . . . .C4. 2
Design Conditions and Design Weights . . . . . . . . . . .A5.12
Design Flight Requirements for Airplane . . . . . . . . .A4.6
Design Loads . . . . . . . . . . . . . . . . . . . . . . A4.1
Design for Tension . . . . . . . . . . . . . . . . . . . C4.1
Differential Equation of Deflection Surface . . . . . . . A18 12
Discontinuities . . . . . . . . . . . . . . . . . . . . .A20.15
Distribution of Loads to Sheet Panels . . . . . . . . . .A21.2
Ductility . . . . . . . . . . . . . . . . . . . . . . . . B1.5
Dummy Unit Loads . . . . . . . . . . . . . . . . . . . . AS.6
Dynamic Effect of Air Forces. . . . . . . . . . . . . . .A4.13
Effect of Axial Load on Moment Distribution . . . . . . .A11.22
Effective Sheet Widths . . . . . . . . . . . . . . . . . C7.20
Elastic Buckling Strength of Flat Sheet in Compression. . C5.1
Elastic / Inelastic Action . . . . . . . . . . . . . . . B1.5
Elastic Lateral Support Columns . . . . . . . . . . . . .C2. 17
Elastic Stability of Column . . . . . . . . . . . . . . . A17.2
Elastic Strain Energy . . . . . . . . . . . . . . . . . . C1. 6
Elasticity and Thermo elasticity: One-Dimensional Problem A26.1
Elasticity and Thermo elasticity: Two-Dimensional
Equations . . . . . . . . . . . . . . . . . . . . . .A25.1
Electric Arc Welding . . . . . . . . . . . . . . . . . . .D2.2
End Day Effects . . . . . . . . . . . . . . . . . . . . .C11.23
End Moments for Continuous Frameworks . . . . . . . . . .All.10
Equations of Static Equilibrium . . . . . . . . . . . . .A2.1
Equilibrium Equations . . . . . . . . . . . . . . . . . .A24.2
Failure of Columns by Compression . . . . . . . . . . . . A18.4
Failure Modes in Curved Honeycomb Panels . . . . . . . . .C12.20
Failure of Structures . . . . . . . . . . . . . . . . . . B1.1
Fatigue Analysis – statistical Distribution . . . . . . . C13.4
Fatigue and Fail-Safe Design . . . . . . . . . . . . . . .C13.8
Fatigue of Materials . . . . . . . . . . . . . . . . . . .81.14
Fatigue S-N Curves . . . . . . . . . . . . . . . . . . . .C13.13
Fillers . . . . . . . . . . . . . . . . . . . . . . . . . D3.5
Fitting Design . . . . . . . . . . . . . . . . . . . . . .D1.1
Fixed Fad Moments . . . . . . . . . . . . . . . . . . . .A11.3
Fixed End Moments Due to Support Deflections . . . . . . .A11.9
Fixity Coefficients . . . . . . . . . . . . . . . . . . . C2.1
Flange Design . . . . . . . . . . . . . . . . . . . . . .C1O.1
Flange Design Stresses . . . . . . . . . . . . . . . . . .CIO.2
Flange Discontinuities . . . . . . . . . . . . . . . . . .CIO.7
Flange Loads . . . . . . . . . . . . . . . . . . . . . . C11.8
Flange Strength (Crippling) . . . . . . . . . . . . . . . C10.4
Flat Sheet Web with Vertical Stiffeners . . . . . . . . . C1O.1
Flexural Shear Flow Distribution . . . . . . . . . . . . .A15.24
Flexural Shear Flow Symmetrical Beam Section . . . . . . .A14.5
Flexural Shear Stress. . . . . . . . . . . . . . . . . . A14.1
Flight Structures – Required Strength . . . . . . . . . . C1.7
Forces on Airplane in Flight . . . . . . . . . . . . . . .A4.4
Formulation of Plane Stress Problem . . . . . . . . . . . A25.5
Frames with Joint Displacements . . . . . . . . . . . . . A12.8
Frames with One Axis of Symmetry . . . . . . . . . . . . .A10.2
Frames with Unknown Joint Deflections . . . . . . . . . . A11.17
Frames with Unknown Joint Displacement . . . . . . . . . .A12.6
Fuselage – Balance Diagram . . . . . . . . . . . . . . . A5.13
Fuselage – Basic Structure . . . . . . . . . . . . . . . .A20.1
Fuselage – Example Problem Solutions . . . . . . . . . . .A20.9
Fuselage Frames . . . . . . . . . . . . . . . . . . . . . A21.17
Fuselage Shears and Moments . . . . . . . . . . . . . . . A5.12
Fuselage Shears and Moments for Landing Conditions . . . .A5.18
Fuselage Stress Methods . . . . . . . . . . . . . . . . . A20.3
Fuselage – Ultimate Bending Strength . . . . . . . . . . .A20.6
Gas Welding . . . . . . . . . . . . . . . . . . . . . . . D2.1
General Organization of an Aircraft Company . . . . . . . Al.1
General Types of Loading . . . . . . . . . . . . . . . . B1.1
Gerard Method . . . . . . . . . . . . . . . . . . . . . . C7.2
Gust Load Factors . . . . . . . . . . . . . . . . . . . . A4.6
Gust Loads . . . . . . . . . . . . . . . . . . . . . . . .C13.23
Honeycomb Flat Panel Failure Modes . . . . . . . . . . . .C12.8
Impact loading . . . . . . . . . . . . . . . . . . . . . .B1.15
Impact Testing Methods . . . . . . . . . . . . . . . . . 81.15
Inelastic Buckling . . . . . . . . . . . . . . . . . . . .A18.6
Inelastic Buckling strength at Flat Sheet in Compression .C5.3
Inelastic Buckling at Thin Sheets . . . . . . . . . . . . A18.23
Inertia Forces . . . . . . . . . . . . . . . . . . . . . .A4.2
Inertia Loads Due to Angular Acceleration . . . . . . . . A5.18
Inertia Loads Due to Unit 100,000 in.lbs Pitching Moment .A5.19
Initial Stresses . . . . . . . . . . . . . . . . . . . . .A8.13
Internal Shear Flaw Systems . . . . . . . . . . . . . . .A6.6
Inter-Rivet Buckling Stress. . . . . . . . . . . . . . . C7.12
Joggled Members . . . . . . . . . . . . . . . . . . . . . D3.4
Johnsm-Euler Equation . . . . . . . . . . . . . . . . . . C7.22
Joints – Method of . . . . . . . . . . . . . . . . . . . .A2.10
Landing Gear Units – Calculating
Reactions & Loads on Members . . . . . . . . . . . A2.23
Landing Impact Loads . . . . . . . . . . . . . . . . . . .C13.32
Large Deflections in Plates . . . . . . . . . . . . . . .A17.6
Limit Loads . . . . . . . . . . . . . . . . . . . . . . . A4.1
Load Factors . . . . . . . . . . . . . . . . . . . . . . .A4.5
Loaded Continuous Beam with Yielding Supports . . . . . . A12.5
Longeron Type System . . . . . . . . . . . . . . . . . . .C11.41
Maneuver Loads . . . . . . . . . . . . . . . . . . . . . .C13.30
Mass: Moment of Inertia . . . . . . . . . . . . . . . . . A3.l
Maximum Shear Stresses for Simple Cross-Sections . . . . A14. 5
Membrane Action in Thin Plates . . . . . . . . . . . . . .Al7.5
Membrane Analogy . . . . . . . . . . . . . . . . . . . . A6.3
Membrane Equations of Equilibrium . . . . . . . . . . . . A16.1
Metallic Materials . . . . . . . . . . . . . . . . . . . .B2.1
Method of Displacements . . . . . . . . . . . . . . . . . A23.1
Method of Joints – Trusses . . . . . . . . . . . . . . . .A2.10
Method of Moments – Trusses . . . . . . . . . . . . . . .A2.11
Method of Shears – Trusses. . . . . . . . . . . . . . . . A2.12
Methods of Column F&Uure . . . . . . . . . . . . . . . . .C2.1
Modulus of Rupture . . . . . . . . . . . . . . . . . . . .C3.3
Modulus; of Rupture Press . . . . . . . . . . . . . . . . C4.15
Modulus Theory . . . . . . . . . . . . . . . . . . . . . .A18.6
Mohr’s Circle . . . . . . . . . . . . . . . . . . . . . . CO.3
Moment Distribution Method . . . . . . . . . . . . . . . .All.1
Moment of Inertia – Strength of Columns . . . . . . . . . C2.8
Moments for Combinations of Various Load Systems . . . . .A5.22
Moments of Inertia – Airplane . . . . . . . . . . . . . A3.8
Moments of Inertia – Centroids . . . . . . . . . . . . . .A3.1
Monocoque Circular Cylinders: Buckling under
External Pressure . . . . . . . . . . . . . . . . C8.11
Monocoque Circular Cylinders: Buckling under Pure Bending C8.7
Monocoque Circular Cylinders: Problems for Finding
Buckling Strength . . . . . . . . . . . . . . . . C8.17
Monocoque Cylinders: Buckling under Axial
Compression . . . . . . . . . . . . . . . . . . . C8.1
Monocoque Cylinders Budding under Axial Load and
Internal Pressure . . . . . . . . . . . . . . . . C8.3
NACA method . . . . . . . . . . . . . . . . . . . . . . . C11.24
Needham Method . . . . . . . . . . . . . . . . . . . . . .C7.1
Neutral Axis Location . . . . . . . . . . . . . . . . . . A13.1
Neutral Axis Method . . . . . . . . . . . . . . . . . . . A13.3
Octahedral Shear Stress Theory . . . . . . . . . . . . . .C1.8
Parallel Axis Theorem . . . . . . . . . . . . . . . . . . A3.1, A3. 9
Physical Action of Wing Section . . . . . . . . . . . . . A19.11
Plane Strain . . . . . . . . . . . . . . . . . . . . . . .A25.7
Plane Stress . . . . . . . . . . . . . . . . . . . . . . A25.1
Plate Beading Analysis . . . . . . . . . . . . . . . . . A17.3
Plate Beading Equations . . . . . . . . . . . . . . . . . A17.I
Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . . B1.7
Practical Wing Section Application . . . . . . . . . . . .A19.24
Pressure Vessels Applications . . . . . . . . . . . . . . A16.2
Pressurized Cabin Stress Analysis . . . . . . . . . . . . A16.6
Principal Axes . . . . . . . . . . . . . . . . . . . . . .A3.10
Principal Strains . . . . . . . . . . . . . . . . . . . . C1.5
Principle of Superposition . . . . . . . . . . . . . . . A5.1
Product of Inertia . . . . . . . . . . . . . . . . . . . .A3.9
Radius of Gyration . . . . . . . . . . . . . . . . . . . .A3.1
Redundant Reactions by Least Work . … . . . . . . . . . A5.2
Redundant Stress Calculations . . . . . . . . . . . . . . A5.27
Redundant Stresses by Least Work . . . . . . . . . . . . .AS.3
Redundant Structures with Members Subjected to
Loadings . . . . . . . . . . . . . . . . . . . .AS.11
Relation – Shear and Bending Moment . . . . . . . . . . . AS.4
Restraint Produced by Lips and Bulbs . . . . . . . . . . .C7.6
Rib I earl from Discontinuities . . . . . . . . . . . . . A21.11
Rib – Multiple-Stringer Beam. . . . . . . . . . . . . . .A21.9
Rib – Single Cell Beam . . . . . . . . . . . . . . . . . .A21.6
Rib – Three Stringer Beam . . . . . . . . . . . . . . . . A21.7
Rivet Design . . . . . . . . . . . . . . . . . . . . . . .C11.15
Rivet Leads . . . . . . . . . . . . . . . . . . . . . . . C11.7
Riveted Connections . . . . . . . . . . . . . . . . . . . DI.14
Rivets in Tension . . . . . . . . . . . . . . . . . . . . DI.25
Sandwich Construction and Design . . . . . . . . . . . . .C12.1
Sandwich Structural Properties . . . . . . . . . . . . . .C12.4
Sandwich Structures Design. . . . . . . . . . . . . . . . C12.33
Secant Modulus . . . . . . . . . . . . . . . . . . . . . .B1.5
Secondary Bending moments in Trusses . . . . . . . . . . .All.29
Section of Maximum Bending Moment . . . . . . . . . . . . A5.4
Section Properties . . . . . . . . . . . . . . . . . . . A3.2
Shear Center . . . . . . . . . . . . . . . . . . . . . . .A14. I
Shear Center Location – Neutral Axis Method . . . . . . .A14.15
Shear Center of Single Cell – Three FIange Beam . . . . . A15.6
Shear Center of Single Cell – Two Flange Beam . . . . . . A15.4
Shear Clips . . . . . . . . . . . . . . . . . . . . . . . D3.1
Shear Flow Cellular Seams . . . . . . . . . . . . . . . .A15.24
Shear Flow – Multiple Cells. . . . . . . . . . . . . . . .Al5.16
Shear Flow in Tapered Sheet panel . . . . . . . . . . . . A15.27
Shear Lag Influences . . . . . . . . . . . . . . . . . . .A19.24
Shear Loads . . . . . . . . . . . . . . . . . . . . . . . C11.5
Shear Stresses & Shear Center – Beam Sections . . . . . .A14.6
Shear Stresses Unsymmetrical Beam Sections . . . . . . . .A14.8
Shearing Stresses from Principal Stresses . . . . . . . . C1.1
Sheet-Stiffener Panels – Failing strength . . . . . . . . C7.15
Sheet Wrinkling Failure . . . . . . . . . . . . . . . . .C7.15
Single Bolt Fitting . . . . . . . . . . . . . . . . . . . DI.4
Single Cell Beam Symmetrical about One Axis. . . . . . . .A15.1
Single Cell – Multiple Flange One Axis of Symmetry . . . .A15.7
Single Cell – Unsymmetrical Multiple Flange . . . . . . . A15.8
Single Spar – Cantilever Wing – Metal Covered . . . . . . A19.10
Slope Deflection – Hinged End. . . . . . . . . . . . . . .A12-3
Static Tension Stress-Strain Diagram . . . . . . . . . . .B1.2
Statically Determinate Coplanar Structures and Loadings . A2.17
Statically Determinate and Indeterminate Structures . . . A2.4
Statically Indeterminate Frames – Joint Rotation . . . . .A12.7
Statically Indeterminate Problem . . . . . . . . . . . . .A8.1
Stepped Column – Strength . . . . . . . . . . . . . . . . C2.14
Stiffened Cylindrical Structures – Ultimate Strength . . .C9.8
Stiffness & Carry-over, Factors for Curved Members . . . Al1.30
Stiffness Factor . . . . . . . . . . . . . . . . . . . . Al1.4
Strain – Displacement Relations . . . . . . . . . . . . . A24.5
Strain Energy . . . . . . . . . . . . . . . . . . . . . .A7. I
Strain Energy of Plates Due to Edge
Compression and Bonding . . . . . . . . . . . . . A18.19
Strain Energy In Pure Bending of plates . . . . . . . . . A11.12
Streamline Tubing – Strength . . . . . . . . . . . . . . .C4.12
Strength Checking and Design – Problems . . . . . . . . . C4.5
Strength of Round Tubes under Combined Loadings . . . . .C4.22
Stress Analysis Formulas . . . . . . . . . . . . . . . . .C11.15
Stress Analysis of Thin Skin – Multiple Stringer
Cantilever Wing . . . . . . . . . . . . . . . . . . .A19.20
Stress Concentration Factors. . . . . . . . . . . . . . . C13.10
Stress Distribution & Angle of Twist for 2-Cell
Thin-Wall Closed Section . . . . . . . . . . . . . . A6.7
Stress-Strain Curve . . . . . . . . . . . . . . . . . . . B1.7
Stress-Strain Relations . . . . . . . . . . . . . . . . . A24.6
Stresses around Panel Cutout. . . . . . . . . . . . . . .A22.1
Stresses in Uprights . . . . . . . . . . . . . . . . . . .C11.17
Stringer Systems in Diagonal Tension . . . . . . . . . . .C11.32
Structural Design Philosophy . . . . . . . . . . . . . . .C1.6
Structural Fittings . . . . . . . . . . . . . . . . . . . A2.2
Structural Skin Pawl Details . . . . . . . . . . . . . . .D3.12
Structures with Cu ved Members . . . . . . . . . . . . . .A11.29
successive Method for Multiple Call Beams . . . . . . . . A15.24
Symbols for Reacting Fitting Units . . . . . . . . . . . .A2.3
Symmetrical Sections – External Shear Loads . . . . . . . A14.2
Tangent Modulus . . . . . . . . . . . . . . . . . . . . . B1.5
Tangent-Modulus Theory . . . . . . . . . . . . . . . . . .A18.8
Taxi Loads . . . . . . . . . . . . . . . . . . . . . . . .C13.33
Tension Clips . . . . . . . . . . . . . . . . . . . . . . D3.2
Tension-Field Beam Action. . . . . . . . . . . . . . . . .C11.1
Tension-Field Beam Formulas . . . . . . . . . . . . . . .C11.2
Theorem of Castigliono . . . . . . . . . . . . . . . . . .A7.5
Theorem of Complementary Energy . . . . . . . . . . . . . A7.5
Theorem of Least Work . . . . . . . . . . . . . . . . . . A8.2
Theorems of Virtual Work and Minimum Potential Energy . . A7.5
Thermal Deflections by Matrix Methods . . . . . . . . . .AS.39
Thermal Stresses . . . . . . . . . . . . . . . . . . . . .AS.14
Thermal Stresses . . . . . . . . . . . . . . . . . . . . .AS.33
Thermoelasticity – Three-Dimensional Equations . . . . . .A24.1
Thin Walled $hails . . . . … . . . . . . . . . . . . . A16.5
Three Cell – Multiple Flange Beam – Symmetrical
about One Axis . . . . . . . . . . . . . . . . . . . A15.15
Three Flange – Single Cell Wing . . . . . . . . . . . . . A29.5
Torsion – Circular Section & . . . . . . . . . . . . . . A5.1
Torsion – Effect of End Restraint . . . . . . . . . . . . A6.16
Torsion – Non-circular Sections . . . . . . . . . . . . . AS.3
Torsion Open Sections . . . . . . . . . . . . . . . . . . A6.4
Torsion of Thin-Walled Cylinder having Closed Type
Stiffeners . . . . . . . . . . . . . . . . . . . . . A6.15
Torsion Thin-Walled Sections. . . . . . . . . . . . . . . A6.5
Torsional Moments – Beams . . . . . . . . . . . . . . . . A5.9
Torsional Modulus of Rupture. . . . . . . . . . . . . . . C4.17
Torsional Shear Flow in Multiple Cell Beams by
Method of Succesive Corrections . . . . . . . . . . .A6.10
Torsional Shear Stresses to Multiple-Cell Thin-Wall
Closed Section – Distribution . . . . . . . . . . . A6.7
Torsional Strength of Round Tubes . . . . . . . . . . . . C4.17
Torsional Stresses in Multiple-Cell, Thin-Walled Tubes . .A6.8
Transmission of Power by Cylindrical Shaft . . . . . . . A6.2
Triaxial Stresses . . . . . . . . . . . . . . . . . . . .C1.5
Truss Deflection by Method of Elastic Weights . . . . . . A7.33
Truss Structures . . . . . . . . . . . . . . . . . . . . .A2.9
Trusses with Double Redundancy . . . . . . . . . . . . . .A8.10
Trusses with multiple Redundancy . . . . . . . . . . . . .A8.11
Trusses with Single Redundancy . . . . . . . . . . . . . A8.7
Tubing Design Facts . . . . . . . . . . . . . . . . . . . C4.5
Two-Dimensional Problems. . . . . . . . . . . . . . . . . A26.5
Two-Cell Multiple Flange Scam – One Axis of Symm . .. . . A15.11
Type of Wing Ribs . . . . . . . . . . . . . . . . . . . . A21.1
Ultimate Strength In Combined Bending & Flexural Shear . .C4.25
Ultimate Strength in Combined Compression, Sending,
Flexural Shear & Torsion . . . . . . . . . . . . . . C4.26
Ultimate Strength in Combined Compression, Bending &
Torsion . . . . . . . . . . . . . . . . . . . . . . .C4.24
Ultimate Strength in Combined Tension, Torsion and
Internal Pressure P in PSI. . . . . . . . . . . . . .C4.26
Uniform Stress Condition . . . . . . . . . . . . . . . . .C1.1
Unit Analysis for Fuselage
Shears and Moments. . . . . . . . . . . . . . . . . .A5.25
Unsymmetrical Frame . . . . . . . . . . . . . . . . . . . A9.2
Unsymmetrical Frames or Rings . . . . . . . . . . . . . . A1O.4
Unsymmetrical Frames using Principal Axes . . . . . . . . A9.18
Unsymmetrical Structures . . . . . . . . . . . . . . . . A9.13
Velocity – Lead Factor Diagram . . . . . . . . . . . . . .A4.7
Wagner Equations . . . . . . . . . . . . . . . . . . . . .C11.4
Web Bending & Shear Stresses . . . . . . . . . . . . . . .C1O.5
Web Design . . . . . . . . . . . . . . . . . . . . . . . C11.18
Web Splices . . . . . . . . . . . . . . . . . . . . . . . C1O.10
Web Strength Stable Webs. . . . . . . . . . . . . . . . . C1O.5
Webs with Round Lightening Holes . . . . . . . . . . . . .C1O.17
Welding
Wing Analysis Problems . . . . . . . . . . . . . . . . . .A19 .2
Wing Arrangements . . . . . . . . . . . . . . . . . . . . A19.1
Wing Effective Section . . . . . . . . . . . . . . . . . .A19.12
Wing Internal, stresses . . . . . . . . . . . . . . . . . A23.14
Wing Shear and Bending Analysis. . . . . . . . . . . . . .A19.14
and Bending Moments . . . . . . . . . . . . . A5.9
Wing – Shear Lag . . . . . . . . . . . . . . . . . . . . A19.25
Wing Shears and Moments . . . . . . . . . . . . . . . . .A5.10
Wing Stiffness matrix . . . . . . . . . . . . . . . . . . A23.11
Wing Strength Requirements . . . . . . . . . . . . . . . .A19.5
Wing Stress Analysis methods . . . . . . . . . . . . . . A19.5
Wing – Ultimate Strength . . . . . . . . . . . . . . . . .A19.11
Work of Structures Group. . . . . . . . . . . . . . . . . A1.2
Y Stiffened Sheet Panels . . . . . . . . . . . . . . . . .C7.2
Good info. A colleague of mine found this while looking for a pun related to Virtual Work and pointed me towards it. Thanks for sharing with the community!
stop browsing da web and get back to ya virtual work.